
Rufman Iman Akbar

 Vol. 3, No. 1, Januari 2013 11

COMPARISON BETWEEN AGILE METHODOLOGY AND
PLAN DRIVEN AS METHOD FOR

ERP DEVELOPMENT

RUFMAN IMAN AKBAR

STT Pelita Bangsa
rufman_ia@yahoo.com.sg

Abstrak : Metode Agile dan Plan Driven adalah dua methode dalam rekayasa perangkat
lunak yang saling berbeda. Masing-masing memiliki tahapan dan proses yang berbeda
mulai dari perencanaan, dokumentsi hingga implementasi aplikasinya. Penelitian ini
mencoba membandingkan penggunaan metode Agile dengan metode Plan Driven dalam
pengembangan perangkat lunak ERP (Enterprise Resources Planning). Perbandingan
dilakukan secara kualitatif untuk melihat perbedaan yang terjadi dalam penggunaan ke
dua metode tersebut. Penelitian dilakukan dalam kerangka Rekayasa Perangkat Lunak
Empiris berdasarkan catatan yang ada dalam proyek pengembangan ERP yang
dilakukan oleh team pengembang dari satu rumah produksi terhadap dua proyek yang
berbeda. Dalam penelitian ditemukan bahwa masing-masing metode memiliki kelebihan
dan kelemahan berdasarkan variabel yang diamati. Secara keseluruhan, metode Agile
memiliki keunggulan di banding Plan Driven dalam pengembangan ERP.
Kata kunci: Metode Pengembangan Perangkat Lunak, Metode Agile, Plan Driven, ERP,

Rekayasa Perangkat Lunak Empiris

1. INTRODUCTION

Main purposes of systems analysis and design, as performed by systems analysts
and designers, seeks to understand what users need to analyze data input or data flow
systematically, data to process or transform, data to store, and output information in
relation to a particular organization or enterprise. By doing thorough analysis, system
analysts and designers seek to identify and solve the right problems. Furthermore,
systems analysis and design is used to analyze, design, and implement improvements in
the support of users and the functioning of businesses that can be accomplished through
the use of computerized information systems (Kendall & Kendall, 2011).

Developing a system without proper planning tends to leads to great user
dissatisfaction and frequently causes the system to fall into disuse. Process of systems
analysis and design lends structure to the analysis and design of information systems, a
costly endeavor that might otherwise have been done in a haphazard way. It can be
thought of as a series of processes systematically undertaken to improve a business
through the use of computerized information systems.

 throughout the systems project is critical factor to the
successful development of application software. Systems analysts and designers are the
other essential component in developing useful information systems. Users are moving
to the forefront as software development teams in their capacity. This means that there
is more emphasis on working with software users; on performing analysis of their
business, problems, and objectives; and on communicating the analysis and design of
the planned system to all involved

It is surprising how few IT organizations utilize a formal methodology.
Although the vast majority employ a wide variety of automated tool sets to assist their

Comparison Between Agile Methodology and

12 Jurnal Ilmiah SISFOTENIKA

development is still largely chaotic in most organizations. A systems methodology
guides the activities of developing and evolving systems starting from the initial
feasibility study and culminating only when the system is finally retired. Use of a
methodology assures the organization that its process of developing and maintaining
systems is sustainable and repeatable (Keyes, 2005).

Choice would be simple if there were only one methodology. Unfortunately, or
can be fortunately, we need to choose from so many kind of methodologies. Some are
industry standard when the others are proprietary to a particular consulting organization.
Given this vast choice, it is important that we are able to determine whether a systems
methodology will meet the specific needs of our organization. The way to do this is by
evaluating the methodology.

Since software systems are abstract and intangible, they are not constrained by
the properties of materials, governed by physical laws, or by manufacturing processes.
This simplifies software engineering, as there are no natural limits to the potential of
software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change
(Sommerville, 2011).

Developing an organizational information system is completely different from
developing a controller for a scientific instrument. Both of these applications need
software development methods; they do not all need the same software engineering

ate for modern software
development. Some of these so-called software failures are a consequence of two
factors (Sommerville, 2011):

The first factor is increasing in demands. New software development method
can help us to build larger, more complex systems, but the demands still can change due
to change in business process. Systems have to be built and delivered more quickly;
larger, even more complex systems are required; systems have to have new capabilities
that were previously thought to be impossible or not included in the systems. Existing
software engineering methods cannot cope and new software engineering techniques
have to be developed to meet new these new demands.

The second factor is about low expectations. It is relatively easy to write
computer programs without using software engineering methods and techniques or
using Cowboy programming techniques. Many companies have drifted into software
development as their products and services have evolved. They do not use software
engineering methods in their everyday work. Consequently, their software is often more
expensive and less reliable than it should be. So, we need better software engineering
education and training to address this problem. We also need to have better matching
method with the requirement and environment condition.

Software engineering is an intensely people-oriented activity, yet little is known
about how software engineers perform their work. In order to improve software
engineering tools and practice, it is therefore essential to conduct field studies, i.e., to
study real practitioners as they solve real problems. To aid this goal, we conduct study
based on the real project on a software house that often handle ERP custom
development project. We choose one project that use Extreme Programming technique
(as one kind of Agile method) and the other use System Development Life Cycle
(SDLC) technique to represent Plan Driven. We use SDLC from Shelly and Rosenbelt,
since there is several kind of SDLC format. For each technique, we collect documents

Rufman Iman Akbar

 Vol. 3, No. 1, Januari 2013 13

from real practice, gather an analysis of some of its advantages and disadvantages from
team members opinion.

We choose ERP system development in this study because of size of the system,
resources, and time period needed in the project. It is not a short time development life
cycle, but also not so long development period. To have apple to apple comparison, we
choose two projects with mostly the same size, resources and time needed to finish the
project. Both projects also apply to same industry (in this case manufacture).

2. BASIC THEORY

Software process model is a simplified representation of a software process.
Each process model represents a process from a particular perspective, and thus
provides only partial information about that process. For example, a process activity
model shows the activities and their sequence but may not show the roles of the people
involved in these activities (Sommerville, 2011).

These generic models are not definitive descriptions of software processes.
Rather, they are abstractions of the process that can be used to explain different
approaches to software development. We can think of them as process frameworks that
may be extended and adapted to create more specific software engineering processes.

The first method to evaluate is SDLC model. This takes the fundamental process
activities of specification, development, validation, and evolution and represents them
as separate process phases such as requirements specification, software design,
implementation, testing, and so on. The first published model of the software
development process was derived from more general system engineering processes.
This model is illustrated in Figure 1. Because of the cascade from one phase to another,

re life cycle (Royce, 1970). The
waterfall model is an example of a plan-driven process in principle, we must plan and
schedule all of the process activities before starting work on them.

Figure 1. Implementation Step To Develop Large Computer Program Waterfall

Model
In practice, iterative interaction between the various phases is confined to

successive steps (see Fig. 2). Ordering of steps is based on the following concept: that
as each step progresses and the design is further detailed; there is iteration with the
preceding and succeeding steps but rarely with the more remote steps in the sequence.
The virtue of all of this is that as the design precedes the change process is scoped down
to manageable limits. At any point in the design process after the requirements analysis
is completed there exists a firm and close up, moving baseline to which to return in the
event of unforeseen design difficulties. What we have is an effective fallback position

Comparison Between Agile Methodology and

14 Jurnal Ilmiah SISFOTENIKA

that tends to maximize the extent of early work that is salvageable and preserved
(Royce, 1970).

Figure 2. Iterative Interaction between Phases

Figure 1 and 2 shows the very basic model of Waterfall technique developed by

Winston Royce in 1970. From time to time, this model had been evolved to form new
Waterfall model or Neo Waterfall (SDLC). Easy to understand and time-tested are the
main reason of this model still exist and evolved until current time. Figure 3 show one
kind of Neo Waterfall model (Shelly & Rosenblatt, 2012). This model also known as
Two-ways Waterfall models with emphasis on iteration and user input.

The SDLC model usually includes five steps, which are described in the
following paragraphs: systems planning, systems analysis, systems design, systems
implementation, and systems support and security (Shelly & Rosenblatt, 2012).

Figure 3. SDLC Model from Shelly and Rosenblatt

SYSTEMS PLANNING. The systems planning phase usually begins with a formal

request to the IT department, called a systems request, which describes problems or
desired changes in an information system or a business process. In many companies, IT

Rufman Iman Akbar

 Vol. 3, No. 1, Januari 2013 15

systems planning is an integral part of overall business planning. When managers and
users develop their business plans, they usually include IT requirements that generate
systems requests. A systems request can come from a top manager, a planning team, a
department head, or the IT department itself. The purpose of this phase is to perform a
preliminary investigation to evaluate an IT-related business opportunity or problem. The
preliminary investigation is a critical step because the outcome will affect the entire
development process.

SYSTEMS ANALYSIS. The purpose of the systems analysis phase is to build a
logical model of the new system. The first step is requirements modeling, where you
investigate business processes and document what the new system must do to satisfy
users. Requirements modeling continues the investigation that began during the systems
planning phase. To understand the system, we perform fact-finding using techniques
such as interviews, surveys, document review, observation, and sampling. Then we use
the factfinding results to build business models, data and process models, and object
models. The deliverable for the systems analysis phase is the system requirements
document. The system requirements document describes management and user
requirements, costs and benefits, and outlines alternative development strategies.

SYSTEMS DESIGN. The purpose of the systems design phase is to create a
physical model that will satisfy all documented requirements for the system. At this
stage, we design the user interface and identify necessary outputs, inputs, and processes.
We also design internal and external controls, including computer-based and manual
features to guarantee that the system will be reliable, accurate, maintainable, and secure.
During the systems design phase, we need to determine the application architecture,
which programmers will use to transform the logical design into program modules and
code. The deliverable for this phase is the system design specification, which is
presented to management and users for review and approval. Management and user
involvement is critical to avoid any misunderstanding about what the new system will
do, how it will do it, and what it will cost.

SYSTEMS IMPLEMENTATION. During the systems implementation phase,
the new system is constructed. Whether the developers use structured analysis or O-O
methods, the procedure is the same programs are written, tested, and documented,
and the system is installed. The objective of the systems implementation phase is to
deliver a completely functioning and documented information system. At the conclusion
of this phase, the system is ready for use. Final preparations include converting data to

system. The systems implementation phase also includes an assessment, called a
systems evaluation, to determine whether the system operates properly and if costs and
benefits are within expectations.

SYSTEMS SUPPORT AND SECURITY. During the systems support and
security phase, the team development maintains, enhances, and protects the system.
Maintenance changes correct errors and adapt to changes in the environment.
Enhancements provide new features and benefits. The objective during this phase is to
maximize return on the IT investment. Security controls safeguard the system from both
external and internal threats. System must be secure, reliable, maintainable, and
scalable. A scalable design can expand to meet new business requirements and volumes.
Information systems development is always a work in progress. Since business
processes change rapidly, most information systems need to be updated significantly or
replaced after several years of operation.

Comparison Between Agile Methodology and

16 Jurnal Ilmiah SISFOTENIKA

Other method to be used in this comparison is Extreme programming, which are
a part of Agile Method. Many different individual methodologies come under the
umbrella of Agile Methodologies, including the Crystal family of methodologies,
Adaptive Software Development, Scrum, Feature Driven Development, and eXtreme
Programming. In February 2001, many of the proponents of these alternative
approaches to systems analysis and design met in Utah in the United States to reach a
consensus on many of the underlying principles their various approaches contained.

The Agile Methodologies share three key principles: (1) a focus on adaptive rather than
predictive methodologies, (2) a focus on people rather than roles, and (3) a self-adaptive
process (Valacich, et.al., 2012).

Figure 4. The Manifesto for Agile Software Development

The Agile Methodologies group argues that software development

methodologies adapted from engineering generally do not fit well with the reality of
developing software. In the engineering disciplines, such as civil engineering,
requirements tend to be well understood. Once the creative and difficult work of design
is completed, construction becomes more predictable. One of the best-known and most
written-about Agile Methodologies is called Extreme Programming. Developed by Kent
Beck in the late 1990s, extreme Programming illustrates many of the central
philosophies of this new approach to systems development. We use extreme
Programming as an example of the central ideas common to many Agile methods.

Extreme Programming (XP) was conceived and developed to address the
specific needs of software development conducted by small teams in the face of vague
and changing requirements. This new lightweight methodology challenges many
conventional tenets, including the long-held assumption that the cost of changing a
piece of software necessarily rises dramatically over the course of time. XP recognizes

Rufman Iman Akbar

 Vol. 3, No. 1, Januari 2013 17

that projects have to work to achieve this reduction in cost and exploit the savings once
they have been earned (Beck, 1999). Fundamentals of XP include:

1. Distinguishing between the decisions to be made by business interests and those
to be made by project stakeholders.

2. Writing unit tests before programming and keeping all of the tests running at all
times.

3. Integrating and testing the whole system--several times a day.
4. Producing all software in pairs, two programmers at one screen.
5. Starting projects with a simple design that constantly evolves to add needed

flexibility and remove unneeded complexity.
6. Putting a minimal system into production quickly and growing it in whatever

directions prove most valuable.

Beck defines a set of five values that establish a foundation for all work
performed as part of XP communication, simplicity, feedback, courage, and respect.
Each of these values is used as a driver for specific XP activities, actions, and tasks
(Beck, 1999).

In order to achieve effective communication between software engineers and
other stakeholders (e.g., to establish required features and functions for the software),
XP emphasizes close, yet informal (verbal) collaboration between customers and
developers, the establishment of effective metaphors for communicating important
concepts, continuous feedback, and the avoidance of voluminous documentation as a
communication medium (Pressman, 2010).

To achieve simplicity, XP restricts developers to design only for immediate needs,
rather than consider future needs. The intent is to create a simple design that can be
easily implemented in code). If the design must be improved, it can be refectories at a
later time.

Feedback is derived from three sources: the implemented software itself, the
customer, and other software team members. By designing and implementing an
effective testing strategy, the software (via test results) provides the agile team with
feedback. XP makes use of the unit test as its primary testing tactic. As each class is
developed, the team develops a unit test to exercise each operation according to its
specified functionality. As an increment is delivered to a customer, the user stories or
use cases that are implemented by the increment are used as a basis for acceptance tests.
The degree to which the software implements the output, function, and behavior of the
use case is a form of feedback. Finally, as new requirements are derived as part of
iterative planning, the team provides the customer with rapid feedback regarding cost
and schedule impact.

Extreme programming applies four rules in developing the software project:
1. Communication. The programmer must communicate with the customer and

elicit his requirements, thus the emphasis on customer satisfaction. The
programmer also needs to communicate with fellow workers, thus the emphasis
on team work.

2. Simplicity. The design is maintained as simply as possible.
3. Feedback. The software is tested from its early stages, feedback is obtained, and

changes are made. This is a cyclical process.
4. Courage. The programmer can make changes even at the last stages and

implement new technologies as and when they are introduced.

Comparison Between Agile Methodology and

18 Jurnal Ilmiah SISFOTENIKA

Figure 5. Extreme Prog. Process Of Software Dev

The components of extreme programming include: a) User stories are written by

the customer and describe the requirements of a system. The customer need not specify
his requirements using any particular format or technical language; he merely writes
these in his own words. Aside from describing what the system must be, the user stories
are used to calculate the time estimates for release planning. At the time of the
implementation of the user stories the developer obtains detailed information from the
customer. The time estimate is usually in the form of ideal development time defined
as how long it would take to implement the story in code if there were no distractions,
no other assignments, and the programmer knew exactly what to do. Typically, each
story will get one to three weeks. The user stories are also used to produce test scenarios
for acceptance testing by the customer as well as to verify that the user stories have been
implemented correctly; and b) Release planning produces the release plan followed
during development of the system; it is also
planning a meeting is set up with the customers and the development team. During this
meeting a set of rules is set up by the customers and developers to which all agree. A
schedule is then prepared. A development team is selected to calculate each user story
in terms of ideal programming weeks, which is how long it would take to implement
that story if absolutely nothing else needed to be done.

3. MATERIAL AND METHOD

Since Software engineering is an intensely people-oriented activity, yet little is
known about how software engineers perform their work. In order to improve software
engineering tools and practice, it is therefore essential to conduct field studies, i.e., to
study real practitioners as they solve real problems (Forest, 2008).

This study combined Direct Technique and Independent Technique as part of
empirical software engineering research. For Direct Technique, we use Participants
Observation to get deep understanding, goals and rational for action, time spent or
frequency over long periods. For Independent Technique, we use Documentation
Analysis to get design and documentation practices. We also use Dynamic and static
Analysis to get understanding about Design and Programming Practices.

Visual Basic.net 2003 and MS SQL Server 2000 are programming language and
data provider used in both project. For the design tools, team use Microsoft Office
(include Visio) as standard tools. Both systems run under Windows XP on client side,
developer side, and Windows Server 2003 for Server Operating System. Total member
of team development is about 20, which contain of 14 programmer/system analysts and
designer, and 6 users key man of the system.

Rufman Iman Akbar

 Vol. 3, No. 1, Januari 2013 19

The sub system for each ERP systems includes; a) Management system module; b)
Sales; c) PPIC; d) Material Warehouse; e) Shop Floor/Work shop; f) QC; g) Finish
Goods Warehouse; h) Delivery System; i) Purchasing; and j) AR Function.

Factors to compare based on each technique of software development are;
a. Resources Needed : Man Month for programming (A.1); and Software and

Hardware (A.2)

b. Efforts: Meeting with Users (qty) (B.1); Man month for system design (B.2); and

Testing with users (B.3)

c. Documentation : Design documentation (C.1); Testing documentation (C.2); and

System documentation (C.3)

d. Error : Logical Error (D.1); and Runtime Error (D.2)

e. Aggregate: Total time schedule (E.1); and dissatisfaction (E.2)

Man Month for programming will show time needed for programming time
this factor include routine test, unit test, and integration test. Software and hardware will
be counted based on concurrent usage on average basis.

Meeting with users will reflect number of meeting formal meeting, on design
and evaluation phase. Man month of system design will show effort of system designer
on design phase to translate idea of solution to design of application. Testing with users
will show number of event to make test together with users in formal time.

Design Documentation will show type of design and total number of page of
design document. Testing documentation will shown number of document for testing,
including test plan, scenario, result, and test report. System Documentation will record
documentation of running system including user manual and running manual.

Logical Error will show number of error based on misinterpretation between
designer user, programmer designer, and user programmer. Runtime error will
record number of error on running system after production phase.

Total Time Schedule will show day needed to finish system starting from Kick
Off Meeting until hand over system. Rate of Users Satisfaction will show evaluation
from users based on some variabel on system development and run time phase.

All factors will be indexed based on FGD before compared. Based on total
index, we will calculate weight of each factor. Values of each weight will be used to
multiply the value of each related factor.

Table 1. Indexing and Weighted
No Factors Index Weight
1 A1 - -
2 A2 - -
3 B1 - -
4 B2 - -
5 B3 - -

Index = from FGD
Weight = index/Sigma of Index

Table 2. Comparison Factors
No Factors W/F XP
1 A1 - -
2 A2 - -
3 B1 - -
4 B2 - -
5 B3 - -

Index SDLC and XP = real value * wight

Comparison Between Agile Methodology and

20 Jurnal Ilmiah SISFOTENIKA

4. RESULT AND DISCUSSION
Based on data from document and FGD, we found the result as follows;

Table 3. Indexing and Weighted

No Factors Index Weight
1 A1 8 0.11
2 A2 6 0.08
3 B1 6 0.08
4 B2 4 0.05
5 B3 4 0.05
6 C1 5 0.07
7 C2 5 0.07
8 C3 6 0.08
9 D1 7 0.09
10 D2 7 0.09
11 E1 9 0.12
12 E2 8 0.11

Table 4. Indexing and Weighted

No Factors SDLC XP
1 A1 6.4 5.33
2 A2 0.64 0.72
3 B1 3.36 2.28
4 B2 0.16 0.13
5 B3 1.92 1.39
6 C1 5.33 2.27
7 C2 2.33 5.22
8 C3 17.6 16.00
9 D1 0.65 0.19
10 D2 0.19 0.09
11 E1 43.2 36
12 E2 0.21 0.32
 82.00 70.65

Total index for Extreme Programming lower than SDLC, it mean based on data

comparison XP still better than SDLC. Except for A2 and E2, we found that index for
SDLC lower than XP.

The Result just based on comparison from two projects on ERP in Manufacture
Company. In the next if possible, better to have more case for comparison. Also for
other business type, need to expand i.e. on trading or services company. For index, also
still can be expand to cover more detail aspect.

REFERENCES

Kendall., Kenneth; Kendall, Julie, 2011, Systems Analysis and Design , Prentice Hall.
Keyes, Jessica, 2005, Software Engineering Handbook, Auerbach Publications.
Sommerville, Ian, 2011, Software Engineering 9th Edition, pearson Education.
Royce, Winston., 1970, Managing The Development of Large Software System,

Proceeding IEEE Wescon, 1970.
Shelly, Gery; Rosenblatt, Harry., 2012, System Analyst and DesignApplication. Course

Technology.
Pressman, Roger, 2010, Software Engineering, 7th Edition, McGraw Hill.
Valacich, Joseph; Georgr, Joey; Hoffer, Jeffrey, 2012, System Analyst and Design .

Pearson.
Beck, Kent, 1999, Extreme Programming Explainde . Embrace3 Change.
Forest,Shull et.al, 2008, Guide to Advanced Empirical Software Engineering . Springer

